RECOME: A new density-based clustering algorithm using relative KNN kernel density

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RECOME: A new density-based clustering algorithm using relative KNN kernel density

Discovering clusters from a dataset with different shapes, density, and scales is a known challenging problem in data clustering. In this paper, we propose the RElative COre MErge (RECOME) clustering algorithm. The core of RECOME is a novel density measure, i.e., Relative K nearest Neighbor Kernel Density (RNKD). RECOME identifies core objects with unit RNKD, and partitions non-core objects int...

متن کامل

KNN-kernel density-based clustering for high-dimensional multivariate data

Density-based clustering algorithms for multivariate data often have difficulties with high-dimensional data and clusters of very different densities.A new density-based clustering algorithm, called KNNCLUST, is presented in this paper that is able to tackle these situations. It is based on the combination of nonparametric k-nearest-neighbor (KNN) and kernel (KNN-kernel) density estimation. The...

متن کامل

Improvement of density-based clustering algorithm using modifying the density definitions and input parameter

Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...

متن کامل

Information Theoretic Clustering using Kernel Density Estimation

In recent years, information-theoretic clustering algorithms have been proposed which assign data points to clusters so as to maximize the mutual information between cluster labels and data [1, 2]. Using mutual information for clustering has several attractive properties: it is flexible enough to fit complex patterns in the data, and allows for a principled approach to clustering without assumi...

متن کامل

Fast Kernel-density-based Classification and Clustering Using P-trees

..................................................................................................................... iii . ACKNOWLEDGMENTS .................................................................................................. iv . LIST OF TABLES .............................................................................................................. ix . LIST OF FIGURES .........

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2018

ISSN: 0020-0255

DOI: 10.1016/j.ins.2018.01.013